Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2002-04, Vol.11 (4), p.467-476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 4 |
container_start_page | 467 |
container_title | IEEE transactions on image processing |
container_volume | 11 |
creator | Chengjun Liu Wechsler, H. |
description | This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features. |
doi_str_mv | 10.1109/TIP.2002.999679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27151397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>999679</ieee_id><sourcerecordid>28270401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-6c3c337ec267027b9ec17d52a43918a443d5f0dee6b574138a871bfeeb96e0703</originalsourceid><addsrcrecordid>eNqF0s9rFTEQB_BFFFurZ8GDhILVy3udyY9NcpRia6Ggh3pestnZvtR92ZrsHvzvzfIWCx7qKYF8MhMm36p6i7BFBHt-e_19ywH41lpba_usOkYrcQMg-fOyB6U3GqU9ql7lfA-AUmH9sjpCw6WspT6ufl65dkysJzfNiVjrMnXMDy7n0AfvpjBGNucQ79i0I0Zx56Ivog95R4kNIZJLrAvZp7AP0cWJ7ceOBtYvRZ0nlsiPdzEshV5XL3o3ZHqzrifVj8svtxdfNzffrq4vPt9svBI4bWovvBCaPK81cN1a8qg7xZ0UFo2TUnSqh46obpWWKIwzGtueqLU1gQZxUn081H1I46-Z8tTsywNpGFykcc6NFhKN0VYUefak5IZrkID_hxoVCqsL_PQkxFojtwDKFHr6D70f5xTLZBpjpDCozNL4_IB8GnNO1DcPZdIu_W4QmiUCTYlAs0SgOUSg3Hi_lp3bPXWPfv3zAj6swGXvhj6VLw350YlaCVBL63cHF4jo7_Ha5Q_lPMDb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884381581</pqid></control><display><type>article</type><title>Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Chengjun Liu ; Wechsler, H.</creator><creatorcontrib>Chengjun Liu ; Wechsler, H.</creatorcontrib><description>This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2002.999679</identifier><identifier>PMID: 18244647</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Classifiers ; Computer science ; Data compression ; Exact sciences and technology ; Face recognition ; Facial ; Illumination ; Image processing ; Information, signal and communications theory ; Kernel ; Lighting ; Mathematical analysis ; Particle measurements ; Performance evaluation ; Robustness ; Signal processing ; Studies ; Telecommunications and information theory ; Testing ; Vectors ; Vectors (mathematics) ; Wavelet</subject><ispartof>IEEE transactions on image processing, 2002-04, Vol.11 (4), p.467-476</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-6c3c337ec267027b9ec17d52a43918a443d5f0dee6b574138a871bfeeb96e0703</citedby><cites>FETCH-LOGICAL-c531t-6c3c337ec267027b9ec17d52a43918a443d5f0dee6b574138a871bfeeb96e0703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/999679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/999679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13653051$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chengjun Liu</creatorcontrib><creatorcontrib>Wechsler, H.</creatorcontrib><title>Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features.</description><subject>Applied sciences</subject><subject>Classifiers</subject><subject>Computer science</subject><subject>Data compression</subject><subject>Exact sciences and technology</subject><subject>Face recognition</subject><subject>Facial</subject><subject>Illumination</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Lighting</subject><subject>Mathematical analysis</subject><subject>Particle measurements</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Wavelet</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0s9rFTEQB_BFFFurZ8GDhILVy3udyY9NcpRia6Ggh3pestnZvtR92ZrsHvzvzfIWCx7qKYF8MhMm36p6i7BFBHt-e_19ywH41lpba_usOkYrcQMg-fOyB6U3GqU9ql7lfA-AUmH9sjpCw6WspT6ufl65dkysJzfNiVjrMnXMDy7n0AfvpjBGNucQ79i0I0Zx56Ivog95R4kNIZJLrAvZp7AP0cWJ7ceOBtYvRZ0nlsiPdzEshV5XL3o3ZHqzrifVj8svtxdfNzffrq4vPt9svBI4bWovvBCaPK81cN1a8qg7xZ0UFo2TUnSqh46obpWWKIwzGtueqLU1gQZxUn081H1I46-Z8tTsywNpGFykcc6NFhKN0VYUefak5IZrkID_hxoVCqsL_PQkxFojtwDKFHr6D70f5xTLZBpjpDCozNL4_IB8GnNO1DcPZdIu_W4QmiUCTYlAs0SgOUSg3Hi_lp3bPXWPfv3zAj6swGXvhj6VLw350YlaCVBL63cHF4jo7_Ha5Q_lPMDb</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Chengjun Liu</creator><creator>Wechsler, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20020401</creationdate><title>Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition</title><author>Chengjun Liu ; Wechsler, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-6c3c337ec267027b9ec17d52a43918a443d5f0dee6b574138a871bfeeb96e0703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Classifiers</topic><topic>Computer science</topic><topic>Data compression</topic><topic>Exact sciences and technology</topic><topic>Face recognition</topic><topic>Facial</topic><topic>Illumination</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Lighting</topic><topic>Mathematical analysis</topic><topic>Particle measurements</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chengjun Liu</creatorcontrib><creatorcontrib>Wechsler, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chengjun Liu</au><au>Wechsler, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>11</volume><issue>4</issue><spage>467</spage><epage>476</epage><pages>467-476</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18244647</pmid><doi>10.1109/TIP.2002.999679</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2002-04, Vol.11 (4), p.467-476 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_27151397 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Classifiers Computer science Data compression Exact sciences and technology Face recognition Facial Illumination Image processing Information, signal and communications theory Kernel Lighting Mathematical analysis Particle measurements Performance evaluation Robustness Signal processing Studies Telecommunications and information theory Testing Vectors Vectors (mathematics) Wavelet |
title | Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gabor%20feature%20based%20classification%20using%20the%20enhanced%20fisher%20linear%20discriminant%20model%20for%20face%20recognition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chengjun%20Liu&rft.date=2002-04-01&rft.volume=11&rft.issue=4&rft.spage=467&rft.epage=476&rft.pages=467-476&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2002.999679&rft_dat=%3Cproquest_RIE%3E28270401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884381581&rft_id=info:pmid/18244647&rft_ieee_id=999679&rfr_iscdi=true |