Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition

This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2002-04, Vol.11 (4), p.467-476
Hauptverfasser: Chengjun Liu, Wechsler, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2002.999679