Treatment of DEHP-rich PVC waste in subcritical urine wastewater: Efficient dechlorination, denitrification, plasticizer decomposition, and preparation of high-purity phthalic acid crystals
It is difficult to dispose diethylhexyl phthalate-rich polyvinyl chloride (DEHP-rich PVC) waste due to the high level of chlorine and plasticizer. On the other hand, the denitrification of urine wastewater with high nitrogen content also faces great challenges. In this study, a synergistic treatment...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2023-01, Vol.441, p.129820-129820, Article 129820 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is difficult to dispose diethylhexyl phthalate-rich polyvinyl chloride (DEHP-rich PVC) waste due to the high level of chlorine and plasticizer. On the other hand, the denitrification of urine wastewater with high nitrogen content also faces great challenges. In this study, a synergistic treatment strategy was developed for the DEHP-rich PVC waste and urine wastewater by a subcritical water process. Subcritical urine wastewater (SUW) was used as a reaction medium in the synergistic treatment. PVC dechlorination, DEHP decomposition, and denitrification of urine wastewater were synchronously achieved in the one pot SUW. Under the optimal conditions (300 °C, 15 min, 1:5 g/mL), the PVC dechlorination ratio, urine wastewater denitrification ratio and DEHP decomposition ratio could reach 98.4%, 64.9%, and 99.2%, respectively. The decomposition of DEHP mainly included hydrolysis, nucleophilic substitution, and acylation. DEHP could be converted into phthalic acid crystal at 220 °C with a yield of 66.25% due to the efficient hydrolysis action of SUW. All the removed Cl was transferred from PVC matrix to aqueous phase. Hydroxyl nucleophilic substitution is the principal dechlorination path of PVC. The reactions between N-containing species and DEHP in SUW resulted in the high-efficiency denitrification of urine wastewater, and the N element was fixed in solid residue or transferred to oil phase as amides compounds. It is believed that the proposed SUW process is a promising technology for the synergistic treatment of DEHP-rich PVC waste and urine wastewater.
[Display omitted]
•We report a synergistic treatment for DEHP-rich PVC waste and urine wastewater.•PVC dechlorination and urine wastewater denitrification reached 98.4% and 64.9%.•DEHP decomposition reached 99.2%.•High-purity phthalic acid crystals were obtained in the synergistic treatment.•Synergistic reaction mechanism was proposed. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.129820 |