Wodyetia bifurcate structured carbon fabrics with durable superhydrophobicity for high-efficiency oil-water separation

The superhydrophobic fiber-based membranes with features of high separation efficiency and low energy consumption for oil-water separation remains a formidable challenge. In this paper, a robust and durable superhydrophobic cotton-derived carbon fabric (CDCF) with wodyetia bifurcate-like structure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2022-10, Vol.439, p.129688-129688, Article 129688
Hauptverfasser: Yang, Sudong, Li, Hongyi, Liu, Shuai, Wang, Shanshan, Li, Hongmei, Li, Huiming, Qi, Wensheng, Xu, Qing, Zhang, Qian, Zhu, Jie, Zhao, Peng, Chen, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The superhydrophobic fiber-based membranes with features of high separation efficiency and low energy consumption for oil-water separation remains a formidable challenge. In this paper, a robust and durable superhydrophobic cotton-derived carbon fabric (CDCF) with wodyetia bifurcate-like structure is fabricated via in situ cobalt-nickel basic carbonate (CNC) deposition and 1 H, 1 H, 2 H, 2 H-perfluorooctyltriethoxysilane (POTS) coating. The combined action of rough surface structure and low surface energy makes CDCF/CNC/POTS with superhydrophobicity/superoleophilicity, anti-wetting, and self-cleaning performance. Intriguingly, the CDCF/CNC/POTS can keep its superhydrophobicity under of the water droplet impact pressure of 781 Pa. In addition to its robust dynamic superhydrophobicity, CDCF/CNC/POTS can also maintain its non-wetting property under harsh environmental conditions such as mechanical abrasion treatment, acidic, alkaline and salt solutions, and ultraviolet radiation. Importantly, the CDCF/CNC/POTS can separate various oil-water mixtures and emulsions under gravity with ultrahigh oil-water mixtures permeate flux (∼19,126 L/m2h), high surfactant-stabilized emulsion permeate flux (∼821 L/m2h), and high separation efficiency (> 98.60 %). Moreover, remarkable recyclability endow the CDCF/CNC/POTS with promising application in treating oily wastewater. This work may benefit the low-cost mass production of cotton-based carbon fabrics for developing eco-friendly high-efficiency separators. [Display omitted] •A fascinating wodyetia bifurcate structured fibrous fabrics have been synthesized.•The carbonization process is crucial for fabrics with superhydrophobicity.•The fabric possesses substantial superhydrophobic durability.•The fabric has anti-wetting, self-cleaning and oil-water separation performance.•Our work gives a new way to prepare high-roughness fiber-based membranes.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2022.129688