Ligand-variable metal clusters charge transfer in Ce-Por-MOF/AgNWs and their application in photoelectrochemical sensing of ronidazole
A photoelectrochemical sensing platform based on ligand-variable metal clusters charge transfer was established for the quantitative assay of ronidazole (RNZ) using Ce-porphyrin-metal–organic frameworks/silver nanowires (Ce-Por-MOFs/AgNWs). Rod-like Ce-Por-MOFs and well-dispersed sub-50 nm AgNWs wer...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2022-10, Vol.189 (10), p.383-383, Article 383 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A photoelectrochemical sensing platform based on ligand-variable metal clusters charge transfer was established for the quantitative assay of ronidazole (RNZ) using Ce-porphyrin-metal–organic frameworks/silver nanowires (Ce-Por-MOFs/AgNWs). Rod-like Ce-Por-MOFs and well-dispersed sub-50 nm AgNWs were prepared using a hydrothermal method and polyol strategy, and then through simple drop coating to yield Ce-Por-MOFs/AgNWs nanocomposites. We investigated the intrinsic semiconducting properties of the composites. More importantly, it was found that the variable-valence metal node can provide electronic defect states similar to those caused by multi-metal doping, synergizing with the surface plasmon effect of AgNWs, which significantly improved the photoelectric conversion efficiency, thereby resulting in excellent optoelectronic properties. In combination with molecular imprinting, a competitive type trace photoelectrochemical sensor for RNZ was constructed using Fe
2+
as the electron donor and probe. Under optimal conditions, the sensor response is proportional to the logarithm of RNZ concentration in the range 0.1–104 nM with a detected limit of 0.038 nM. The recoveries ranged from 87.2 to 116% with relative standard deviations (RSDs) |
---|---|
ISSN: | 0026-3672 1436-5073 |
DOI: | 10.1007/s00604-022-05477-1 |