Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production

Water splitting for yielding high-purity hydrogen represents the ultimate choice to reduce carbon dioxide emission owing to the superior energy density and zero-pollution emission after combustion. However, the high electricity consumption and requirement of large quantities of pure water impede its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-09, Vol.16 (9), p.15286-15296
Hauptverfasser: Zhang, Baofeng, Zhang, Chuguo, Yang, Ou, Yuan, Wei, Liu, Yuebo, He, Lixia, Hu, Yuexiao, Zhao, Zhihao, Zhou, Linglin, Wang, Jie, Wang, Zhong Lin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water splitting for yielding high-purity hydrogen represents the ultimate choice to reduce carbon dioxide emission owing to the superior energy density and zero-pollution emission after combustion. However, the high electricity consumption and requirement of large quantities of pure water impede its large-scale application. Here, a triboelectric nanogenerator (W-TENG) converting offshore wind energy into electricity is proposed for commercial electric energy saving and cost reduction. By introducing PTFE/POM dielectric pairs with matched HOMO/LUMO band gap energy, a high charge density is achieved to promote the output of W-TENG. With the impedance matching design of transformers with the internal resistance of W-TENG, the output current is further enhanced from 1.42 mA to 54.5 mA with a conversion efficiency of more than 92.0%. Furthermore, benefiting from the high electrocatalytic activity (overpotential = 166 mV and Tafel slope = 181.2 mV dec–1) of a carbon paper supported NiCoP-MOF catalyst, natural seawater can be adopted as a resource for in situ hydrogen production without acid or alkaline additives. Therefore, the self-powered seawater electrolysis system achieves a H2 production rate as high as 1273.9 μL min–1 m–2 with a conversion efficiency of 78.9%, demonstrating a more practical strategy for conversion of wind energy into renewable hydrogen energy.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c06701