Effect of water on the physicomechanical properties of composites containing secondary polyethylene and linen yarn production waste
The effect of the amount of absorbed water on the physicomechanical indices (tensile modulus, tensile strength, and ultimate strain) of composites based on secondary polyethylene (SPE) of two trademarks and linen yarn production waste (LW), both with and without A coupling agent (diphenylmetane diis...
Gespeichert in:
Veröffentlicht in: | Mechanics of composite materials 2002-07, Vol.38 (4), p.351-356 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of the amount of absorbed water on the physicomechanical indices (tensile modulus, tensile strength, and ultimate strain) of composites based on secondary polyethylene (SPE) of two trademarks and linen yarn production waste (LW), both with and without A coupling agent (diphenylmetane diisocyanate - DIC), is evaluated. It is shown that the strength properties considerably depend on the time of water sorption and on the blend composition. The tensile strength decreases with increased amount of absorbed water (with increased time of exposure to distilled water) and with increased content of LW in the composites. This can be explained by the plasticizing effect of water molecules, which is confirmed by the increase in the ultimate strain of specimens after their exposure to water. The slight increase in the strength observed for the systems modified with DIC is probably caused by cross-linking of the free diisocyanate in the system under the action of moisture. The diisocyanate intensifies the interfacial interaction and retards the water-sorption process. Therefore, the resulting strength indices of these systems are higher than those of the unmodified compositions. |
---|---|
ISSN: | 0191-5665 1573-8922 |
DOI: | 10.1023/A:1020084226069 |