Effect of oceanic uptake on atmospheric lifetimes of selected trace gases
We have calculated from a 2° × 2° grid of oceanic properties the contribution of oceanic loss to the overall lifetimes of a number of anthropogenic and naturally produced trace gases involved in global warming and stratospheric ozone depletion. The model, originally developed for atmospheric methyl...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. D. Atmospheres 2002-10, Vol.107 (D20), p.ACH 1-1-ACH 1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have calculated from a 2° × 2° grid of oceanic properties the contribution of oceanic loss to the overall lifetimes of a number of anthropogenic and naturally produced trace gases involved in global warming and stratospheric ozone depletion. The model, originally developed for atmospheric methyl bromide, can be used for any well‐mixed trace gas where the seawater degradation rate constants and solubilities are known. Of the gases tested, it is clear that known oceanic chemical degradation processes alone are not significant sinks for most HFCs and HCFCs. Chemical degradation in the oceans is a substantial sink for COS (28%) and COCl2 (8%) and a minor sink for CH3Cl ( |
---|---|
ISSN: | 0148-0227 2156-2202 |
DOI: | 10.1029/2001JD001267 |