Differential equation of Appell polynomials via the factorization method

Let { P n ( x)} ∞ n=0 be a sequence of polynomials of degree n. We define two sequences of differential operators Φ n and Ψ n satisfying the following properties: Φ n(P n(x))=P n−1(x), Ψ n(P n(x))=P n+1(x). By constructing these two operators for Appell polynomials, we determine their differential e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2002-02, Vol.139 (2), p.231-237
Hauptverfasser: He, M.X., Ricci, P.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { P n ( x)} ∞ n=0 be a sequence of polynomials of degree n. We define two sequences of differential operators Φ n and Ψ n satisfying the following properties: Φ n(P n(x))=P n−1(x), Ψ n(P n(x))=P n+1(x). By constructing these two operators for Appell polynomials, we determine their differential equations via the factorization method introduced by Infeld and Hull (Rev. Mod. Phys. 23 (1951) 21). The differential equations for both Bernoulli and Euler polynomials are given as special cases of the Appell polynomials.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00423-X