Effects of substrate loading on co-metabolic transformation pathways and removal rates of pharmaceuticals in biofilm reactors

This study focused on the effects of substrate (raw wastewater) on the biological removal of 20 pharmaceuticals in moving bed biofilm reactors. This is the first study discriminating experimentally between effects of adaptation (45 d) and stimulation (100 h) on the removal of micropollutants. The re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-12, Vol.853, p.158607-158607, Article 158607
Hauptverfasser: Liang, Chuanzhou, Carvalho, Pedro N., Bester, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focused on the effects of substrate (raw wastewater) on the biological removal of 20 pharmaceuticals in moving bed biofilm reactors. This is the first study discriminating experimentally between effects of adaptation (45 d) and stimulation (100 h) on the removal of micropollutants. The results presented in this paper show: i) Tramadol and venlafaxine are subject to microbial N-oxidation (besides the known demethylation). ii) Changes in substrate loading, changed the preferential degradation pathways, e.g., from N-oxidation (under starvation) to N-demethylation of both model compounds: tramadol and venlafaxine, during adaptation and stimulation to high substrate supply. iii) In starving biofilms, the effects of stimulation on removal rates are minor (−100 to +150 %) in comparison to those caused by adaptation (−100 to +700 %). iv) Adaptation to high loadings resulted in increased removal rates (up to 700 % in selected cases) v) Adaptation to high loadings followed by high loading of stimulation, resulted in the highest increase of removal rates (+49 % to +1800 %) for hard-to-degrade compounds (e.g., diclofenac). All in all, this study shows that the efficiency of biofilm reactors is heavily dependent on their adaptation to substrate. [Display omitted] •Degradation pathways and kinetics are affected by substrate during adaption and simulation.•Substrate loading during adaptation, determined which pharmaceuticals can be degraded.•Easy- and difficult-to-degrade pharmaceuticals behaved differently under high loading.•Substrate during adaptation changed the metabolisation of tramadol and venlafaxine.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.158607