Magnetically-separable acid-resistant CoFe2O4@Polymer@MIL-100 core-shell catalysts for the acetalization of benzaldehyde and methanol
[Display omitted] Novel reusable acid-resistant magnetic polymer nanospheres-immobilized MIL-100 (CoFe2O4@Polymer@MIL-100) catalyst was prepared by a layer-by-layer method to achieve a controllable structure. The obtained core-shell catalyst consisted of modified magnetic nanoparticles as the core,...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-01, Vol.629, p.571-581 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Novel reusable acid-resistant magnetic polymer nanospheres-immobilized MIL-100 (CoFe2O4@Polymer@MIL-100) catalyst was prepared by a layer-by-layer method to achieve a controllable structure. The obtained core-shell catalyst consisted of modified magnetic nanoparticles as the core, a carboxylic-functionalized polymer as the protective layer, and an MIL-100 shell as the active catalytic layer by chemical bonds on the polymer. The catalysts showed good stability, good magnetic saturation, and acid corrosion resistance. The thickness of the MIL-100 shell could be adjusted by controlling the metal salt concentration and the number of layer-by-layer cycles. Nano-sized MIL-100 showed better mass transfer efficiency and catalytic activity. A conversion of 97.7% after 10 min was observed during acetalization when using CoFe2O4@Polymer@MIL-100 as the catalyst. CoFe2O4@Polymer@MIL-100 could be reused at least five times. The use of a polymer layer on CoFe2O4@Polymer@MIL-100 prevented acidic ligands from corroding the magnetic core. Chemical bonds between MIL-100 and functional magnetic polymer cores improved the catalyst’s stability. CoFe2O4@Polymer@MIL-100 exhibited high activity, excellent stability, and easy magnetic separation. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.09.004 |