Flow Field Simulations of a Gas Turbine Combustor

The flow field exiting the combustor in a gas turbine engine is quite complex considering the presence of large dilution jets and complicated cooling schemes for the combustor liner. For the most part, however, there has been a disconnect between the combustor and turbine when simulating the flow fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2002-07, Vol.124 (3), p.508-516
Hauptverfasser: Barringer, M. D, Richard, O. T, Walter, J. P, Stitzel, S. M, Thole, K. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flow field exiting the combustor in a gas turbine engine is quite complex considering the presence of large dilution jets and complicated cooling schemes for the combustor liner. For the most part, however, there has been a disconnect between the combustor and turbine when simulating the flow field that enters the nozzle guide vanes. To determine the effects of a representative combustor flow field on the nozzle guide vane, a large-scale wind tunnel section has been developed to simulate the flow conditions of a prototypical combustor. This paper presents experimental results of a combustor simulation with no downstream turbine section as a baseline for comparison to the case with a turbine vane. Results indicate that the dilution jets generate turbulence levels of 15–18% at the exit of the combustor with a length scale that closely matches that of the dilution hole diameter. The total pressure exiting the combustor in the near-wall region neither resembles a turbulent boundary layer nor is it completely uniform putting both of these commonly made assumptions into question.
ISSN:0889-504X
1528-8900
DOI:10.1115/1.1475742