Fuzzy logic control for flexible link robot arm by singular perturbation approach
This work addresses flexible-link robot arm control using fuzzy logic, and a singular perturbation approach. A singular perturbation approach is introduced to derive the slow and fast subsystems and thus reduce the effect of spillover. Consequently, a two-time scale fuzzy logic controller will be ap...
Gespeichert in:
Veröffentlicht in: | Applied soft computing 2002-08, Vol.2 (1), p.24-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work addresses flexible-link robot arm control using fuzzy logic, and a singular perturbation approach. A singular perturbation approach is introduced to derive the slow and fast subsystems and thus reduce the effect of spillover. Consequently, a two-time scale fuzzy logic controller will be applied for such systems. The fast-subsystem controller damps out the vibration of the flexible structure by the optimal control method. Thus, the slow-subsystem fuzzy controller dominates the tracking of the trajectory. The stability of the internal dynamics was guaranteed by adding a boundary-layer correction based on singular perturbations. The first investigation of hybrid LQ-fuzzy controller yielded a favorable output response for the flexible link robot arm than does the traditional outer-loop PD control with the boundary layer stabilizer. The fuzzy control method is reliable and robust. |
---|---|
ISSN: | 1568-4946 |
DOI: | 10.1016/S1568-4946(02)00026-1 |