A flexible surface tooling for sheet-forming processes: conceptual studies and numerical simulation
All sheet-forming processes suffer from a limitation that tooling in the form of molds/dies is a precursor for realizing any simple or complex shape. In order to overcome this limitation, discrete surface tooling has been proposed in the past. This consists of a large number of closely spaced surfac...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2002-06, Vol.124 (1), p.133-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | All sheet-forming processes suffer from a limitation that tooling in the form of molds/dies is a precursor for realizing any simple or complex shape. In order to overcome this limitation, discrete surface tooling has been proposed in the past. This consists of a large number of closely spaced surface tool elements arranged in a matrix form whose heights can be adjusted to approximate the contour of desired surface shapes. Such a tooling has been successfully demonstrated experimentally. In this paper, a variation of discrete surface tooling, called as flexible surface tooling, has been proposed. The proposed tooling consists of discrete surface tool elements draped with flexible sheet of rubber-like material to provide a continuous surface required for tooling applications. Computational simulation of the proposed tooling is carried out for feasibility studies. Computational simulation involves the deformation analysis of rubber-like membranes in multiple contact by FEM. The results of the analysis indicate that the flexible surface tooling is an option for sheet-forming processes in general and for processes like composite layup in particular. |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/S0924-0136(02)00141-3 |