DYNAMICS AND DISTRIBUTED CONTROL OF CONICAL SHELLS LAMINATED WITH FULL AND DIAGONAL ACTUATORS

Nozzles, rocket fairings and many engineering structures/components are often made of conical shells. This paper focuses on the finite element modelling, analysis, and control of conical shells laminated with distributed actuators. Electromechanical constitutive equations and governing equations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2002-09, Vol.256 (1), p.65-79
Hauptverfasser: TZOU, H.S., WANG, D.W., CHAI, W.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nozzles, rocket fairings and many engineering structures/components are often made of conical shells. This paper focuses on the finite element modelling, analysis, and control of conical shells laminated with distributed actuators. Electromechanical constitutive equations and governing equations of a generic piezo(electric)elastic continuum are defined first, followed by the strain–displacement relations and electric field–potential relations of laminated shell composites. Finite element formulation of a piezoelastic shell element with non-constant Lamé parameters is briefly reviewed; element and system matrix equations of the piezoelastic shell sensor/actuator/structure laminate are derived. The system equation reveals the coupling of mechanical and electric fields, in which the electric force vector is often used in distributed control of shells. Finite element eigenvalue solutions of conical shells are compared with published numerical results first. Distributed control of the conical shell laminated with piezoelectric shell actuators is investigated and control effects of three actuator configurations are evaluated.
ISSN:0022-460X
1095-8568
DOI:10.1006/jsvi.2001.4199