Photoacclimation of photosystem II photochemistry induced by rose Bengal and methyl viologen in Nannochloropsis oceanica

The photosynthetic apparatus is a major reactive oxygen species (ROS) proliferator, especially in high-light environments. The role of ROS in photoinhibition and photoacclimation mechanisms has been extensively explored, primarily in model plant species. However, little work has been performed on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemical & photobiological sciences 2022-12, Vol.21 (12), p.2205-2215
Hauptverfasser: Ben-Sheleg, Avraham, Vonshak, Avigad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photosynthetic apparatus is a major reactive oxygen species (ROS) proliferator, especially in high-light environments. The role of ROS in photoinhibition and photoacclimation mechanisms has been extensively explored, primarily in model plant species. However, little work has been performed on the topic in non-Archaeplastida organisms, such as the model heterokont species Nannochloropsis oceanica. To investigate the photoacclimation and damaging impact of singlet oxygen and superoxide anions on the photosynthetic apparatus of N. oceanica, we subjected cells to two doses of methyl viologen and rose bengal. Significant findings: Rose bengal (a singlet-oxygen photosensitizer) induced changes to the photosynthetic apparatus and PSII photochemistry mirroring high-light-acclimated cells, suggesting that singlet-oxygen signaling plays a role in the high-light acclimation of PSII. We further suggest that this singlet-oxygen pathway is mediated outside the plastid, given that rose bengal caused no detectable damage to the photosynthetic apparatus. Methyl viologen (a superoxide-anion sensitizer) induced an enhanced non-photochemical quenching response, similar to what occurs in high-light-acclimated cells. We propose that superoxide anions produced inside the plastid help regulate the high-light acclimation of photoprotective pathways. Graphical abstract
ISSN:1474-9092
1474-9092
DOI:10.1007/s43630-022-00289-x