Development of a Self-Forming Ytterbium Silicate Skin on Silicon Nitride by Controlled Oxidation

A dense and uniform polycrystalline ytterbium silicate skin on silicon nitride ceramics was developed by a controlled oxidation process to improve the hot corrosion resistance of silicon nitride. The process consists of purposely oxidizing the silicon nitride by heating it at high temperatures. It w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2002-06, Vol.85 (6), p.1435-1440
Hauptverfasser: Lee, Seung Kun, Readey, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dense and uniform polycrystalline ytterbium silicate skin on silicon nitride ceramics was developed by a controlled oxidation process to improve the hot corrosion resistance of silicon nitride. The process consists of purposely oxidizing the silicon nitride by heating it at high temperatures. It was found that the ytterbium silicate phase was formed as an oxidation product on the surface of the silicon nitride when it was exposed to air at temperatures above 1250°C. The volume fraction of ytterbium silicate compared with that of SiO2 on the silicon nitride surface increased with increasing oxidation time and temperature. The formation and growth of ytterbium silicate on the surface of silicon nitride is attributed to a nucleation and growth mechanism. Ultimately, a dense and uniform ytterbium silicate skin with 3–4 μm of skin thickness was obtained by oxidation at 1450°C for 24 h. The ytterbium silicate layer, formed by oxidation of the silicon nitride, is associated with the reaction of SiO2 on the surface of silicon nitride with Yb2O3 introduced in the silicon nitride as a sintering additive. Preliminary tests showed that the ytterbium silicate skin appears to protect silicon nitride from hot corrosion. No observable evidence of a reaction between the skin and molten Na2SO4 was found when it was exposed to molten Na2SO4 at 1000°C for 30 min.
ISSN:0002-7820
1551-2916
DOI:10.1111/j.1151-2916.2002.tb00293.x