Trigonal Copper(I) Complexes with Cyclic (Alkyl)(amino)carbene Ligands for Single-Photon Near-IR Triplet Emission

Molecular near-IR (NIR) triplet-state emitters are of importance for the development of new, organic-electronics-based telecommunication technologies as optical fibers operating in the corresponding spectral bands allow for data transfer over much longer distances due to the significantly lower atte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2022-09, Vol.61 (37), p.14833-14844
Hauptverfasser: Muthig, André M. T., Krumrein, Marcel, Wieland, Justin, Gernert, Markus, Kerner, Florian, Pflaum, Jens, Steffen, Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular near-IR (NIR) triplet-state emitters are of importance for the development of new, organic-electronics-based telecommunication technologies as optical fibers operating in the corresponding spectral bands allow for data transfer over much longer distances due to the significantly lower attenuation. However, achieving such low-energy triplet excited states with good radiative rate constants is very challenging, and studies regarding the single-photon emission of organometallics in this energy range are scarce. We have prepared a series of trigonal CuI CAAC complexes bearing chelating ligands with O, N, S, and Se donor atoms and studied their photophysical properties in this context. The compounds show weak low-energy absorption in solution between 400 and 500 nm due to mixed Cu → CAAC 1MLCT/LLCT states, resulting in yellow-green to orange appearance, which we have also correlated to the 15N NMR resonances of the π-accepting carbene ligand. In the solid state, phosphorescence from dominant 3(Cu → CAAC) CT states is observed at room temperature. The emission of the complexes is bathochromically shifted in comparison to structurally related linearly coordinated copper­(I) CAAC complexes due to structural reorganization in the excited state to a T-shape. For [Cu­(dbm)­(CAACMe)], the broad phosphorescence with outstanding λmax = 760 nm tailors out to ca. 1100 nm and leads to its proof-of-concept application as a nonclassical single-photon light source, constituting key functional units for the implementation of tap-proof data transfer.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.2c02376