Electrochemical performances of a LiFePO4-based heat-treated activated carbon electrode

Activated carbon was heat-treated to investigate the effect of heat-treating activated carbon on the power and long-term reliability characteristics of LiFePO4-based electrodes. As the heat-treatment temperature of the activated carbon increased, the surface area and total pore volume were decreased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2022-09, Vol.58 (76), p.10675-10678
Hauptverfasser: Ryu, Jihyeon, Yang, Sunhye, Back, Jongkyu, Eom, Seungwook, Ick-Jun Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activated carbon was heat-treated to investigate the effect of heat-treating activated carbon on the power and long-term reliability characteristics of LiFePO4-based electrodes. As the heat-treatment temperature of the activated carbon increased, the surface area and total pore volume were decreased. In addition, oxygen functional groups were decomposed and the O/C ratio on the pore surface was reduced. The power and long-term reliability characteristics of the composite electrodes were improved by the use of heat-treated activated carbon, which probably resulted from an increase in the electrical conductivity of the electrodes as the bulk resistance and surface resistance of the heat-treated activated carbon decreased. The diffusion coefficient of the LFP/AC electrode was considerably increased due to the pores of activated carbon.
ISSN:1359-7345
1364-548X
DOI:10.1039/d2cc01709a