The role of glutathione conjugation on the transcellular transport process of PEGylated liposomes across the blood brain barrier
[Display omitted] Notwithstanding the growing evidence of improved drug delivery efficiency to the brain by ligand modification of PEGylated liposomes, the comprehensive knowledge of their transport processes and payload across the BBB is yet to be revealed. Herein, this study sought to understand t...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2022-10, Vol.626, p.122152-122152, Article 122152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Notwithstanding the growing evidence of improved drug delivery efficiency to the brain by ligand modification of PEGylated liposomes, the comprehensive knowledge of their transport processes and payload across the BBB is yet to be revealed. Herein, this study sought to understand the glutathione (GSH) ligand effect on transcellular transport mechanisms of liposomes through the blood–brain barrier (BBB) by comparing PEGylated liposomes (PEG-L) and GSH PEGylated liposomes (GSH-PEG-L). Endocytosis and exocytosis of liposomes including the role of secreted extracellular vesicles (EVs) of brain endothelial cells (BECs) were assessed. Furthermore, pharmacokinetics and brain distribution analysis of gemcitabine loaded liposomes were carried out in healthy rats to ascertain the in vivo applicability. Our findings suggested that the presence of GSH increased the cellular uptake of liposomes by up to 3-fold in human brain microvascular endothelial cells depending on the dose but not in astrocytes. The cell exposure to liposomes particularly GSH-PEG-L dramatically increased the cell secretion of small and microvesicles with liposomal components, though different liposomes preferred different vesicles for exocytosis. This correlated with GSH-PEG-L transport efficiency of 4 % across the in vitro BBB model in 24 h, 1.7-fold higher than that of PEG-L (p |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2022.122152 |