Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis
Accumulating evidence have indicated that ferroptosis plays a crucial role in cerebral ischemia-reperfusion (I/R) injury which is the most serious treatment complication of ischemic stroke. Baicalein (5,6,7-trihydroxyflavone) is a main bioactive ingredient isolated from a traditional Chinese medicin...
Gespeichert in:
Veröffentlicht in: | Chemico-biological interactions 2022-10, Vol.366, p.110137-110137, Article 110137 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accumulating evidence have indicated that ferroptosis plays a crucial role in cerebral ischemia-reperfusion (I/R) injury which is the most serious treatment complication of ischemic stroke. Baicalein (5,6,7-trihydroxyflavone) is a main bioactive ingredient isolated from a traditional Chinese medicine named Baikal Skullcap, which is the root of Scutellaria baicalensis Georgi. This study investigated the potential role of baicalein in cerebral I/R injury using oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells, transient middle cerebral artery occlusion (tMCAO) mice and RSL3-sitmulated HT22 cells. Baicalein improved the viability of OGD/R cells and significantly ameliorated cerebral I/R injury in tMCAO mice. Baicalein decreased the iron levels, lipid peroxidation production and morphology features of ferroptosis of the brain tissues in tMCAO mice, which indicated that baicalein ameliorated cerebral I/R injury by inhibiting ferroptosis in vivo and in vitro. We further confirmed that baicalein had the activity of inhibiting ferroptosis in RSL3-stimulated HT22 cells. Western blot revealed that baicalein inhibited the ferroptosis by regulating on the expression levels of GPX4, ACSL4 and ACSL3 in OGD/R cells, tMCAO mice and RSL3-stimulated HT22 cells. Our findings demonstrated that baicalein reversed the cerebral I/R injury via anti-ferroptosis, which was regulated by GPX4/ACSL4/ACSL3 axis. The results suggested that baicalein has therapeutic potential as a drug for cerebral I/R injury.
•Validation the therapeutic potential of baicalein on cerebral I/R injury.•Anti-cerebral I/R injury of baicalein partly regulated by inhibiting ferroptosis.•Baicalein inhibits the ferroptosis in cerebral I/R injury via GPX4/ACSL3/ACSL4. |
---|---|
ISSN: | 0009-2797 1872-7786 |
DOI: | 10.1016/j.cbi.2022.110137 |