Creep behavior of eutectic Sn–Ag lead-free solder alloy
Precipitation-strengthened tin-based eutectic Sn–3.5 Ag alloy was investigated for its creep behavior at three temperatures ranging from 303 to 393 K, under the tensile stress range of σ/E = 10−4 to 10−3. The steady-state creep rates cover seven orders of magnitude (10−3 to 10−9 s−1). The initial mi...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2002-11, Vol.17 (11), p.2897-2903 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precipitation-strengthened tin-based eutectic Sn–3.5 Ag alloy was investigated for its creep behavior at three temperatures ranging from 303 to 393 K, under the tensile stress range of σ/E = 10−4 to 10−3. The steady-state creep rates cover seven orders of magnitude (10−3 to 10−9 s−1). The initial microstructure was found to have Ag3Sn intermetallic compound finely dispersed in the matrix of β–Sn. By incorporation of a threshold stress, σth, into the analysis, the creep data of eutectic Sn–Ag at all temperatures can be fitted by a single straight line with a slope of seven after normalizing the steady-state creep rate and the effective stress, indicating that the creep rates are controlled by the dislocation-pipe diffusion in the Sn matrix. The steady-state creep rate, , can then be expressed as , where QC is the creep activation energy, G is the temperature-dependent shear modulus, b is Burger's vector, R is the universal gas constant, T is the absolute temperature, σ is the applied stress, A is a material-dependent constant, and , in which σOB is the Orowan bowing stress and kR is the relaxation factor. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/JMR.2002.0420 |