A class of fractional integral transforms: a generalization of the fractional Fourier transform

The paper presents a systematic and unified approach to fractional integral transforms. We introduce a new class of fractional integral transforms that includes the fractional Fourier and Hankel transforms and the fractional integration and differentiation operators as special cases. These fractiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2002-03, Vol.50 (3), p.619-627
1. Verfasser: Zayed, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents a systematic and unified approach to fractional integral transforms. We introduce a new class of fractional integral transforms that includes the fractional Fourier and Hankel transforms and the fractional integration and differentiation operators as special cases. These fractional transforms may also be viewed as angular transforms, indexed by an angular parameter /spl alpha/, since their kernels are obtained by taking the limits of analytic functions in the unit disc along a radius making an angle /spl alpha/ with the x-axis.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.984750