A comparison theorem for the iterative method with the preconditioner ( I+ Smax)
In 1991, Gunawardena et al. (Linear Algebra Appl. 154–156 (1991) 123) have reported the modified Gauss–Seidel method with a preconditioner ( I+ S). In this article, we propose to use a preconditioner ( I+ S max) instead of ( I+ S). Here, S max is constructed by only the largest element at each row o...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2002-08, Vol.145 (2), p.373-378 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1991, Gunawardena et al. (Linear Algebra Appl. 154–156 (1991) 123) have reported the modified Gauss–Seidel method with a preconditioner (
I+
S). In this article, we propose to use a preconditioner (
I+
S
max) instead of (
I+
S). Here,
S
max is constructed by only the largest element at each row of the upper triangular part of A. By using the lemma established Neumann and Plemmons (Linear Algebra Appl. 88/89 (1987) 559), we get the comparison theorem for the proposed method. Simple numerical examples are also given. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/S0377-0427(01)00588-X |