A comparison theorem for the iterative method with the preconditioner ( I+ Smax)

In 1991, Gunawardena et al. (Linear Algebra Appl. 154–156 (1991) 123) have reported the modified Gauss–Seidel method with a preconditioner ( I+ S). In this article, we propose to use a preconditioner ( I+ S max) instead of ( I+ S). Here, S max is constructed by only the largest element at each row o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2002-08, Vol.145 (2), p.373-378
Hauptverfasser: Kotakemori, Hisashi, Harada, Kyouji, Morimoto, Munenori, Niki, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1991, Gunawardena et al. (Linear Algebra Appl. 154–156 (1991) 123) have reported the modified Gauss–Seidel method with a preconditioner ( I+ S). In this article, we propose to use a preconditioner ( I+ S max) instead of ( I+ S). Here, S max is constructed by only the largest element at each row of the upper triangular part of A. By using the lemma established Neumann and Plemmons (Linear Algebra Appl. 88/89 (1987) 559), we get the comparison theorem for the proposed method. Simple numerical examples are also given.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00588-X