A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation
The paper presents a mixed signal CMOS feedforward neural-network chip with on-chip error-reduction hardware for real-time adaptation. The chip has compact on-chip weighs capable of high-speed parallel learning; the implemented learning algorithm is a genetic random search algorithm: the random weig...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2002-09, Vol.13 (5), p.1178-1186 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents a mixed signal CMOS feedforward neural-network chip with on-chip error-reduction hardware for real-time adaptation. The chip has compact on-chip weighs capable of high-speed parallel learning; the implemented learning algorithm is a genetic random search algorithm: the random weight change (RWC) algorithm. The algorithm does not require a known desired neural network output for error calculation and is suitable for direct feedback control. With hardware experiments, we demonstrate that the RWC chip, as a direct feedback controller, successfully suppresses unstable oscillations modeling combustion engine instability in real time. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2002.1031948 |