A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation

The paper presents a mixed signal CMOS feedforward neural-network chip with on-chip error-reduction hardware for real-time adaptation. The chip has compact on-chip weighs capable of high-speed parallel learning; the implemented learning algorithm is a genetic random search algorithm: the random weig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2002-09, Vol.13 (5), p.1178-1186
Hauptverfasser: Liu, J., Brooke, M.A., Hirotsu, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents a mixed signal CMOS feedforward neural-network chip with on-chip error-reduction hardware for real-time adaptation. The chip has compact on-chip weighs capable of high-speed parallel learning; the implemented learning algorithm is a genetic random search algorithm: the random weight change (RWC) algorithm. The algorithm does not require a known desired neural network output for error calculation and is suitable for direct feedback control. With hardware experiments, we demonstrate that the RWC chip, as a direct feedback controller, successfully suppresses unstable oscillations modeling combustion engine instability in real time.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2002.1031948