A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions

A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel–Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2022-09, Vol.189 (9), p.360-360, Article 360
Hauptverfasser: Yang, Yu-Ping, Chen, Ji-Kai, Guo, Ping, Lu, Yan-Rui, Liu, Cai-Fang, Wang, Bang-Jin, Zhang, Jun-Hui, Xie, Sheng-Ming, Yuan, Li-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel–Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) ( n  = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m −1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation. Graphical abstract
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-022-05448-6