Na2B11H13 and Na11(B11H14)3(B11H13)4 as potential solid-state electrolytes for Na-ion batteries

Solid-state sodium batteries have attracted great attention owing to their improved safety, high energy density, large abundance and low cost of sodium compared to the current Li-ion batteries. Sodium-boranes have been studied as potential solid-state electrolytes and the search for new materials is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-09, Vol.51 (36), p.13848-13857
Hauptverfasser: Souza, Diego H P, D'Angelo, Anita M, Humphries, Terry D, Buckley, Craig E, Paskevicius, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state sodium batteries have attracted great attention owing to their improved safety, high energy density, large abundance and low cost of sodium compared to the current Li-ion batteries. Sodium-boranes have been studied as potential solid-state electrolytes and the search for new materials is necessary for future battery applications. Here, a facile and cost-effective solution-based synthesis of Na2B11H13 and Na11(B11H14)3(B11H13)4 is demonstrated. Na2B11H13 presents an ionic conductivity in the order of 10−7 S cm−1 at 30 °C, but undergoes an order–disorder phase transition and reaches 10−3 S cm−1 at 100 °C, close to that of liquids and the solid-state electrolyte Na-β-Al2O3. The formation of a mixed-anion solid-solution, Na11(B11H14)3(B11H13)4, partially stabilises the high temperature structural polymorph observed for Na2B11H13 at room temperature and it exhibits Na+ conductivity higher than its constituents (4.7 × 10−5 S cm−1 at 30 °C). Na2B11H13 and Na11(B11H14)3(B11H13)4 exhibit an oxidative stability limit of 2.1 V vs. Na+/Na.
ISSN:1477-9226
1477-9234
DOI:10.1039/d2dt01943d