Machine learning-based radiomic computed tomography phenotyping of thymic epithelial tumors: Predicting pathological and survival outcomes

For patients with thymic epithelial tumors, accurately predicting clinicopathological outcomes remains challenging. We aimed to investigate the performance of machine learning-based radiomic computed tomography phenotyping for predicting pathological (World Health Organization [WHO] type and TNM sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of thoracic and cardiovascular surgery 2023-02, Vol.165 (2), p.502-516.e9
Hauptverfasser: Tian, Dong, Yan, Hao-Ji, Shiiya, Haruhiko, Sato, Masaaki, Shinozaki-Ushiku, Aya, Nakajima, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For patients with thymic epithelial tumors, accurately predicting clinicopathological outcomes remains challenging. We aimed to investigate the performance of machine learning-based radiomic computed tomography phenotyping for predicting pathological (World Health Organization [WHO] type and TNM stage) and survival outcomes (overall and progression-free survival) in patients with thymic epithelial tumors. This retrospective study included patients with thymic epithelial tumors between January 2001 and January 2022. The radiomic features were extracted from preoperative unenhanced computed tomography images. After strict feature selection, random forest and random survival forest models were fitted to predict pathological and survival outcomes, respectively. The model performance was assessed by the area under the curve (AUC) and validated internally by the bootstrap method. In total, 124 patients with a median age of 61 years were included. The radiomics random forest models of WHO type and TNM stage showed satisfactory performance with an AUCWHO of 0.898 (95% CI, 0.753-1.000) and an AUCTNM of 0.766 (95% CI, 0.642-0.886). For overall survival and progression-free survival prediction, the radiomics random survival forest models showed good performance (integrated AUCs, 0.923; 95% CI, 0.691-1.000 and 0.702; 95% CI, 0.513-0.875, respectively), and the integrated AUCs increased to 0.935 (95% CI, 0.705-1.000) and 0.811 (95% CI, 0.647-0.942), respectively, when combined with clinicopathological features. Machine learning-based radiomic computed tomography phenotyping might allow for the satisfactory prediction of pathological and survival outcomes and further improve prognostic performance when integrated with clinicopathological features in patients with thymic epithelial tumors. [Display omitted] Machine learning-based computed tomography radiomics. [Display omitted]
ISSN:0022-5223
1097-685X
DOI:10.1016/j.jtcvs.2022.05.046