Arrayed Heterostructures of MoS2 Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors

Nonmetallic ammonium ions that feature high safety, low molar mass, and small hydrated radius properties have shown great advantages in wearable aqueous supercapacitors. The construction of high-energy-density flexible ammonium-ion asymmetric supercapacitors (AASCs) is promising but still challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-09, Vol.16 (9), p.14951-14962
Hauptverfasser: Han, Lijie, Luo, Jie, Zhang, Rongkang, Gong, Wenbin, Chen, Long, Liu, Fan, Ling, Ying, Dong, Yihao, Yong, Zhenzhong, Zhang, Yongyi, Wei, Lei, Zhang, Xiaogang, Zhang, Qichong, Li, Qingwen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonmetallic ammonium ions that feature high safety, low molar mass, and small hydrated radius properties have shown great advantages in wearable aqueous supercapacitors. The construction of high-energy-density flexible ammonium-ion asymmetric supercapacitors (AASCs) is promising but still challenging due to the lack of high-capacitance pseudocapacitive anodes. Herein, freestanding core–shell heterostructures supported on carbon nanotube fibers were designed by anchoring MoS2 nanosheets on nanowires (MoS2@TiN/CNTF) as anodes for AASCs. With contributions of abundant active sites and conspicuous synergistic effects of multiple components for arrayed heterostructure engineering, the developed MoS2@TiN/CNTF anodes exhibit a specific capacitance of 1102.5 mF cm–2 at 2 mA cm–2. Theoretical calculations confirm the dramatic enhancement of the binding strength of ammonium ions on the MoS2 shell layer at the heterostructure, where a built-in electric field exists to accelerate the charge transfer. By utilizing a MnO2/CNTF cathode and NH4Cl/poly­(vinyl alcohol) (PVA) as a gel electrolyte, quasi-solid-state fiber-shaped AASCs were successfully constructed, achieving a specific capacitance of 351.2 mF cm–2 and an energy density of 195.1 μWh cm–2, outperforming most recently reported fiber-shaped supercapacitors. This work provides a promising strategy to rationally design heterostructure engineering of MoS2@TiN nanoarrays toward advanced anodes for application in next-generation AASCs.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c05905