Predicting the severity of internet gaming disorder with resting-state brain features: A multi-voxel pattern analysis
Internet gaming disorder (IGD) has become a worldwide mental health concern; however, the neural mechanism underlying this disorder remains unclear. Multivoxel pattern analysis (MVPA), a newly developed data-driven approach, can be used to investigate the neural features of IGD based on massive neur...
Gespeichert in:
Veröffentlicht in: | Journal of affective disorders 2022-12, Vol.318, p.113-122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Internet gaming disorder (IGD) has become a worldwide mental health concern; however, the neural mechanism underlying this disorder remains unclear. Multivoxel pattern analysis (MVPA), a newly developed data-driven approach, can be used to investigate the neural features of IGD based on massive neural data.
Resting-state fMRI data from four hundred and two participants with varying levels of IGD severity were recruited. Regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF) were calculated and subsequently decoded by applying MVPA. The highly weighted regions in both predictive models were selected as regions of interest for further graph theory and Granger causality analysis (GCA) to explore how they affect IGD severity.
The results revealed that the neural patterns of ReHo and ALFF can independently and significantly predict IGD severity. The highly weighted regions that contributed to both predictive models were the right precentral gyrus and left postcentral gyrus. Moreover, topological properties of the right precentral gyrus were significantly correlated with IGD severity; further GCA revealed effective connectivity from the right precentral gyrus to left precentral gyrus and dorsal anterior cingulate cortex, both of which were significantly associated with IGD severity.
The present study demonstrated that IGD has distinctive neural patterns, and this pattern could be found by machine learning. In addition, the neural features in the right precentral gyrus play a key role in predicting IGD severity. The current study revealed the neural features of IGD and provided a potential target for IGD interventions using brain modulation. |
---|---|
ISSN: | 0165-0327 1573-2517 |
DOI: | 10.1016/j.jad.2022.08.078 |