Identification of critical hemodilution by artificial intelligence in bone marrow assessed for minimal residual disease analysis in acute myeloid leukemia: The Cinderella method

Minimal residual disease (MRD) detection is a strong predictor for survival and relapse in acute myeloid leukemia (AML). MRD can be either determined by molecular assessment strategies or via multiparameter flow cytometry. The degree of bone marrow (BM) dilution with peripheral blood (PB) increases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2023-04, Vol.103 (4), p.304-312
Hauptverfasser: Hoffmann, Joerg, Thrun, Michael C., Röhnert, Maximilian A., Bonin, Malte, Oelschlägel, Uta, Neubauer, Andreas, Ultsch, Alfred, Brendel, Cornelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimal residual disease (MRD) detection is a strong predictor for survival and relapse in acute myeloid leukemia (AML). MRD can be either determined by molecular assessment strategies or via multiparameter flow cytometry. The degree of bone marrow (BM) dilution with peripheral blood (PB) increases with aspiration volume causing consecutive underestimation of the residual AML blast amount. In order to prevent false‐negative MRD results, we developed Cinderella, a simple automated method for one‐tube simultaneous measurement of hemodilution in BM samples and MRD level. The explainable artificial intelligence (XAI) Cinderella was trained and validated with the digital raw data of a flow cytometric “8‐color” AML‐MRD antibody panel in 126 BM and 23 PB samples from 35 patients. Cinderella predicted PB dilution with high accordance compared to the results of the Holdrinet formula (Pearson's correlation coefficient r = 0.94, R2 = 0.89, p 
ISSN:1552-4922
1552-4930
DOI:10.1002/cyto.a.24686