Using machine learning approach to reproduce the measured feature and understand the model-to-measurement discrepancy of atmospheric formaldehyde
The solar absorption spectrometry in the infrared spectral region, using high-resolution Fourier transform infrared (FTIR) spectrometer, has been established as a powerful tool in atmospheric science. These observations cannot be performed continuously, for example, clouds prevent observations. On t...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2022-12, Vol.851, p.158271-158271, Article 158271 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solar absorption spectrometry in the infrared spectral region, using high-resolution Fourier transform infrared (FTIR) spectrometer, has been established as a powerful tool in atmospheric science. These observations cannot be performed continuously, for example, clouds prevent observations. On the other hand, chemical transport models give continuously data. Their results depend on the knowledge of emission inventories, the chemistry involved, and the meteorological fields, yielding to potential biases between measurements and simulations. In our study we concentrated on Formaldehyde (HCHO) and used machine learning approach to fill the gap between the observations, performed on an irregular time scale and having their measurement lacks, and model data, giving continuous data, but having potential variable biases. The proposed machine learning approach is based on the Light Gradient Boosting Machine (LightGBM) algorithm and created by using GEOS-Chem simulations, meteorological fields, emission inventory, and is referred to as the GEOS-Chem-LightGBM model. The results of established GEOS-Chem-LightGBM model have generated consistent HCHO predictions with the ground-based FTIR and satellite (OMI and TROPOMI) observations. In order to understand the GEOS-Chem model to measurement discrepancy, we have investigated the contribution of each input variable to GEOS-Chem-LightGBM model HCHO predictions through the SHapely Additive exPlanations (SHAP) approach. We found that the GEOS-Chem model underestimates the sensitivities of HCHO total column to most photochemical variables, contributing to lower amplitudes of diurnal cycle and seasonal cycle by the GEOS-Chem model. By correcting the model-to-measurement discrepancy, the sensitivities of HCHO total column to all variables by the GEOS-Chem-LightGBM became to be in good agreement with the FTIR observations. As a result, GEOS-Chem-LightGBM model has significantly improved the performance of HCHO predictions compared to the GEOS-Chem alone. The proposed GEOS-Chem-LightGBM model can be extendible to other atmospheric constituents obtained by various measurement techniques and platforms, and is expected to have wide applications.
[Display omitted]
•The GEOS-Chem-LightGBM model predicted continually FTIR HCHO total columns.•The GEOS-Chem-LightGBM model has significantly performance of HCHO predictions.•The discrepancy between model-to-measurement has been investigated by SHAP approach.•The machine learning method |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.158271 |