Dexmedetomidine suppresses the isoflurane-induced neurological damage by upregulating Heme Oxygenase-1 via activation of the mitogen-activated protein kinase kinase 1/extracellular regulated protein kinases 1/nuclear factor erythroid 2-related factor 2 axis in aged rats

Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemico-biological interactions 2022-11, Vol.367, p.110114-110114, Article 110114
Hauptverfasser: Huang, Haijin, Zhu, Yunsheng, Zhang, Yang, Hou, Benchao, Zhang, Qin, Shi, Xiaoyun, Min, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurological impairment in aged rats in relation to the MEK1/ERK1/Nrf2/HO-1 axis. The study enrolled elderly patients undergoing ISO anesthesia. Patient cognitive function following treatment with DEX was evaluated using mini-mental state examination (MMSE). The results revealed that DEX supplementation of anesthesia contributed to higher MMSE scores in patients one week post treatment. Rat model of neurological impairment was also induced in 18-month-age Wistar rats by ISO, followed by DEX treatment. Based on the results of Morris water maze experiment, ELISA, and TUNEL and hematoxylin-eosin staining, in vivo experiments confirmed that DEX could reduce the oxidative stress and neurological damage induced by ISO in rats. DEX activated the nuclear factor erythroid 2-related factor (Nrf2)/Heme Oxygenase 1 (HO-1) pathway. DEX upregulated the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway, whereby attenuating the ISO-caused oxidative stress and neurological damage in rats. Collectively, DEX suppresses the ISO-induced neurological impairment in the aged rats by promoting HO-1 through activation of the MEK1/ERK1/Nrf2 axis. •This study newly identifies the mechanism of DEX in ISO-induced neurological damage.•DEX effectively reduces postoperative cognitive impairment in elderly patients.•DEX could alleviate ISO-induced oxidative stress and neurological damage in rats.•DEX upregulates the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway.•This study provides a new target for improving cognitive function in the elderly.
ISSN:0009-2797
1872-7786
DOI:10.1016/j.cbi.2022.110114