Maternal and zygotic ZFP57 regulate coronary vascular formation and myocardium maturation in mouse embryo

Background Genomic and epigenomic dynamics both play critical roles during embryogenesis. Zfp57 maintains genomic imprinting with both maternal and zygotic functions. In our previous study, we found that maternal and zygotic Zfp57 modulate NOTCH signaling during cardiac development. In this study, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental dynamics 2024-01, Vol.253 (1), p.144-156
Hauptverfasser: Zhao, Junzheng, Zhao, Jingjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Genomic and epigenomic dynamics both play critical roles during embryogenesis. Zfp57 maintains genomic imprinting with both maternal and zygotic functions. In our previous study, we found that maternal and zygotic Zfp57 modulate NOTCH signaling during cardiac development. In this study, we investigated Zfp57 mutants from E11.5 to E13.5 to delineate its function during cardiac development. Results Here, we describe novel roles of maternal and zygotic Zfp57 during cardiovascular system development. We found that maternal and zygotic Zfp57 was required for coronary vascular development. Maternal and zygotic loss of Zfp57 perturbed the sprouting of the sinus venosus‐derived endothelial cells and led to underdeveloped coronary vasculature, meanwhile, there was an ectopic overproduction of blood islands over the ventricles. Furthermore, loss of Zfp57 and failed vasculature disturbed myocardium maturation. Loss of maternal and zygotic Zfp57 resulted in hyper trabeculation and failed myocardium compaction. Zfp57 zygotic mutant (M+Z−) hearts displayed noncompaction cardiomyopathy at E18.5. Conclusions Our results suggest that maternal and zygotic ZFP57 are essential for coronary vascular formation and myocardium maturation in mice. Our research provides evidence for the role of genomic imprinting during embryogenesis. Key Findings Zfp57 ablation results in cardiovascular development failure in mice
ISSN:1058-8388
1097-0177
DOI:10.1002/dvdy.530