Muscle usage and workload assessment of cardiac ablation procedure with the use of a novel catheter torque tool in a pediatric simulator

Background Cardiac ablation catheters are small in diameter and pose ergonomic challenges that can affect catheter stability. Significant finger dexterity and strength are necessary to maneuver them safely. We evaluated a novel torque tool to reduce muscle activation when manipulating catheters and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of interventional cardiac electrophysiology 2022-12, Vol.65 (3), p.757-764
Hauptverfasser: Mass, Paige N., Kumthekar, Rohan N., Clark, Bradley C., Opfermann, Justin D., Sherwin, Elizabeth D., DiBiase, Luigi, Berul, Charles I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Cardiac ablation catheters are small in diameter and pose ergonomic challenges that can affect catheter stability. Significant finger dexterity and strength are necessary to maneuver them safely. We evaluated a novel torque tool to reduce muscle activation when manipulating catheters and improve perceived workload of ablation tasks. The objective was to evaluate measurable success, user perception of workload, and muscle usage when completing a simulated ablation task with and without the use of a catheter torque tool. Methods Cardiology attendings and fellows were fitted with surface electromyographic (EMG) sensors on 6 key muscle groups in the left hand and forearm. A standard ablation catheter was inserted into a pediatric cardiac ablation simulator and subjects navigated the catheter tip to 6 specific electrophysiologic targets, including a 1-min simulated radiofrequency ablation lesion. Time to complete the task, number of attempts required to complete the lesion, and EMG activity normalized to percentage of maximum voluntary contraction were collected throughout the task. The task was completed 4 times, twice with and twice without the torque tool, in semi-randomized order. A NASA Task Load Index survey was completed by the participant at the conclusion of each task. Results Time to complete the task and number of attempts to create a lesion were not altered by the tool. Subjectively, participants reported a significant decrease in physical demand, effort, and frustration, and a significant increase in performance. Muscle activation was decreased in 4 of 6 muscle groups. Conclusion The catheter torque tool may improve the perceived workload of cardiac ablation procedures and reduce muscle fatigue caused by manipulating catheters. This may result in improved catheter stability and increased procedural safety.
ISSN:1383-875X
1572-8595
DOI:10.1007/s10840-022-01348-0