Phytochemical screening, cytotoxicity assessment and evaluation of in vitro antiplasmodial and in vivo antimalarial activities of Mentha spicata L. methanolic leaf extract

Malaria causes extensive morbidity and mortality, and the decreasing efficacy of artemisinin and its partner drugs has posed a serious concern. Therefore, it is important to identify new antimalarials, and the natural compounds from plants provide a promising platform. Mentha spicata L. representing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2022-11, Vol.298, p.115636-115636, Article 115636
Hauptverfasser: Chatterjee, Aditi, Singh, Nalini, Chanu, Wahengbam Kabita, Singh, Chingakham Brajakishor, Nagaraj, Viswanathan Arun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malaria causes extensive morbidity and mortality, and the decreasing efficacy of artemisinin and its partner drugs has posed a serious concern. Therefore, it is important to identify new antimalarials, and the natural compounds from plants provide a promising platform. Mentha spicata L. representing the Lamiaceae family has been used in traditional medicine for various diseases including malaria. This study was aimed at evaluating the antiplasmodial activity of M. spicata methanolic leaf extract using Plasmodium falciparum (Pf) cultures (Pf3D7 and artemisinin (ART)-resistant PfCam3.IR539T strains) and antimalarial activity using Plasmodium berghei (Pb)-infected mice. Dry leaf powder and methanolic leaf extract were examined for in vivo antimalarial activity and the efficacy of oral versus parenteral administration was compared. Leaves of M. spicata were collected and extracted using 70% methanol in water (v/v). [3H]-hypoxanthine incorporation assays and Giemsa-stained smears were used to assess the in vitro antiplasmodial activity of M. spicata methanolic extract against Pf3D7 and ART-resistant PfCam3.IR539T strains. Cytotoxicity was evaluated in HeLa and HEK-293T cell lines using MTT assays. Hemolysis assays were performed using red blood cells (RBCs). In vivo antimalarial activities of M. spicata dry leaf powder and methanolic leaf extract were examined in P. berghei-infected mice by Rane's curative test and Peters' 4-day suppressive test. Phytochemical screening of M. spicata methanolic leaf extract indicated the presence of reducing sugars, phenolic compounds, flavonoids, glycosides, sterols, saponins, alkaloids, coumarins, tannins, carbohydrates, and proteins. In vitro studies carried out using Pf cultures showed that M. spicata methanolic leaf extract had significant antiplasmodial activity against Pf3D7 cultures with a 50% inhibitory concentration (IC50) of 57.99 ± 2.82 μg/ml. The extract was also effective against ART-resistant PfCam3.IR539T strain with an IC50 of 71.23 ± 3.85 μg/ml. The extract did not show significant in vitro cytotoxicity, hemolysis, and in vivo toxicity. In vivo studies performed using Pb-infected mice treated with M. spicata dry leaf powder and methanolic leaf extract showed ∼50% inhibition in parasite growth at 1500 mg/kg and 1000 mg/kg doses, respectively. There was also a significant delay in the mortality of treated mice. Parenteral administration was found to be appropriate for the in vivo treatment. Our in vitro and in v
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2022.115636