A neural network approach to elevated temperature creep–fatigue life prediction

A new approach using a back-propagation neural network for life prediction was developed and demonstrated for predicting the elevated temperature (0.7–0.8 T m) creep–fatigue behavior of Ni-base alloy INCONEL 690. The neural network was trained with five extrinsic parameters, characterized via a 2 5–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 1999-03, Vol.21 (3), p.225-234
Hauptverfasser: Venkatesh, Vasisht, Rack, H.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new approach using a back-propagation neural network for life prediction was developed and demonstrated for predicting the elevated temperature (0.7–0.8 T m) creep–fatigue behavior of Ni-base alloy INCONEL 690. The neural network was trained with five extrinsic parameters, characterized via a 2 5–1 fractional factorial design methodology, and an intrinsic parameter (final grain size). The back-propagation network training error, prediction error and training time were minimized using a second fractional factorial design. Life prediction accuracy using only 11 training sets, few training iterations (
ISSN:0142-1123
1879-3452
DOI:10.1016/S0142-1123(98)00071-1