A neural network approach to elevated temperature creep–fatigue life prediction
A new approach using a back-propagation neural network for life prediction was developed and demonstrated for predicting the elevated temperature (0.7–0.8 T m) creep–fatigue behavior of Ni-base alloy INCONEL 690. The neural network was trained with five extrinsic parameters, characterized via a 2 5–...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 1999-03, Vol.21 (3), p.225-234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new approach using a back-propagation neural network for life prediction was developed and demonstrated for predicting the elevated temperature (0.7–0.8
T
m) creep–fatigue behavior of Ni-base alloy INCONEL 690. The neural network was trained with five extrinsic parameters, characterized via a 2
5–1 fractional factorial design methodology, and an intrinsic parameter (final grain size). The back-propagation network training error, prediction error and training time were minimized using a second fractional factorial design. Life prediction accuracy using only 11 training sets, few training iterations ( |
---|---|
ISSN: | 0142-1123 1879-3452 |
DOI: | 10.1016/S0142-1123(98)00071-1 |