A Chandra observation of the X-ray environment and jet of 3C 31
Abstract We have used a deep Chandra observation of the central regions of the twin-jet Fanaroff-Riley class I (FRI) radio galaxy 3C 31 to resolve the thermal X-ray emission in the central few kpc of the host galaxy, NGC 383, where the jets are thought to be decelerating rapidly. This allows us to m...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2002-07, Vol.334 (1), p.182-192 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We have used a deep Chandra observation of the central regions of the twin-jet Fanaroff-Riley class I (FRI) radio galaxy 3C 31 to resolve the thermal X-ray emission in the central few kpc of the host galaxy, NGC 383, where the jets are thought to be decelerating rapidly. This allows us to make high-precision measurements of the density, temperature and pressure distributions in this region, and to show that the X-ray emitting gas in the centre of the galaxy has a cooling time of only 5×107 yr. In a companion paper, these measurements are used to place constraints on models of the jet dynamics.
A previously unknown one-sided X-ray jet in 3C 31, extending up to 8 arcsec from the nucleus, is detected and resolved. Its structure and steep X-ray spectrum are similar to those of X-ray jets known in other FRI sources, and we attribute the radiation to synchrotron emission from a high-energy population of electrons. In situ particle acceleration is required in the region of the jet where bulk deceleration is taking place.
We also present X-ray spectra and luminosities of the galaxies in the Arp 331 chain of which NGC 383 is a member. The spectrum and spatial properties of the nearby bright X-ray source 1E 0104+3153 are used to argue that the soft X-ray emission is mostly due to a foreground group of galaxies rather than to the background broad absorption-line quasar. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1046/j.1365-8711.2002.05513.x |