Krüppel-like factors family regulation of adipogenic markers genes in bovine cattle adipogenesis
Intramuscular fat (IMF) content is a crucial determinant of meat quality traits in livestock. A network of transcription factors act in concert to regulate adipocyte formation and differentiation, which in turn influences intramuscular fat. Several genes and associated transcription factors have bee...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular probes 2022-10, Vol.65, p.101850-101850, Article 101850 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intramuscular fat (IMF) content is a crucial determinant of meat quality traits in livestock. A network of transcription factors act in concert to regulate adipocyte formation and differentiation, which in turn influences intramuscular fat. Several genes and associated transcription factors have been reported to influence lipogenesis and adipogenesis during fetal and subsequent growth stage. Specifically in cattle, Krüppel-like factors (KLFs), which represents a family of transcription factors, have been reported to be involved in adipogenic differentiation and development. KLFs are a relatively large group of zinc-finger transcription factors that have a variety of functions in addition to adipogenesis. In mammals, the participation of KLFs in cell development and differentiation is well known. Specifically in the context of adipogenesis, KLFs function either as positive (KLF4, KLF5, KLF6, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14 and KLF15) or negative organizers (KLF2, KLF3 and KLF7), by a variety of different mechanisms such as crosstalk with C/EBP and PPARγ. In this review, we aim to summarize the potential functions of KLFs in regulating adipogenesis and associated pathways in cattle. Furthermore, the function of known bovine adipogenic marker genes, and associated transcription factors that regulate the expression of these marker genes is also summarized. Overall, this review will provide an overview of marker genes known to influence bovine adipogenesis and regulation of expression of these genes, to provide insights into leveraging these genes and transcription factors to enhance breeding programs, especially in the context of IMF deposition and meat quality.
•KLFs family have a significant role in fat deposition and metabolism regulation in animals.•KLFs act as positive regulators (KLF4, KLF5, KLF6, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14 and KLF15) of adipogenesis through various mechanisms involving crosstalk with transcription factors.•KLFs act as negative regulators (KLF2, KLF3 and KLF7) of adipogenesis through various mechanisms involving crosstalk with transcription factors.•miRNAs and their association with KLFs regulators which presents a significant effect on the regulation of adipogenesis in animals. |
---|---|
ISSN: | 0890-8508 1096-1194 |
DOI: | 10.1016/j.mcp.2022.101850 |