Role of EPS in mitigation of plant abiotic stress: The case of Methylobacterium extorquens PA1

Methylobacterium extorquens is a facultative methylotrophic Gram-negative bacterium, often associated with plants, that exhibits a unique ability to grow in the presence of high methanol concentrations, which serves as a single carbon energy source. We found that M. extorquens strain PA1 secretes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2022-11, Vol.295, p.119863-119863, Article 119863
Hauptverfasser: Vanacore, Adele, Forgione, Maria Concetta, Cavasso, Domenico, Nguyen, Ha Ngoc Anh, Molinaro, Antonio, Saenz, James P., D'Errico, Gerardino, Paduano, Luigi, Marchetti, Roberta, Silipo, Alba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methylobacterium extorquens is a facultative methylotrophic Gram-negative bacterium, often associated with plants, that exhibits a unique ability to grow in the presence of high methanol concentrations, which serves as a single carbon energy source. We found that M. extorquens strain PA1 secretes a mixture of different exopolysaccharides (EPSs) when grown in reference medium or in presence of methanol, that induces the secretion of a peculiar and heterogenous mixture of EPSs, with different structure, composition, repeating units, bulk and a variable degree of methylation. These factors influenced 3D structure and supramolecular assets, diffusion properties and hydrodynamic radius, and likely contribute to increase methanol tolerance and cell stability. No direct methanol involvement in the EPSs solvation shell was detected, indicating that the polymer exposure to methanol is water mediated. The presence of methanol induces no changes in size and shape of the polymer chains, highlighting how water-methanol mixtures are a good solvent for refEPS and metEPS. [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2022.119863