Metabolic profiles and screening tactics for MDMB-4en-PINACA in human urine and serum samples

MDMB-4en-PINACA (Methyl 3,3-dimethyl-2-[1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido] butanoate) is a potent agonist of the CB1 receptor. In 2021, it was one of the most common synthetic cannabinoid receptor agonists (SCRAs) seized by the Beijing Drug Control Agency. MDMB-4en-PINACA can be hard to d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical and biomedical analysis 2022-10, Vol.220, p.114985-114985, Article 114985
Hauptverfasser: Gu, Kunshan, Qin, Shiyang, Zhang, Ying, Zhang, Wenfang, Xin, Guobin, Shi, Boyuan, Wang, Jifen, Wang, Yuanfeng, Lu, Jianghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MDMB-4en-PINACA (Methyl 3,3-dimethyl-2-[1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido] butanoate) is a potent agonist of the CB1 receptor. In 2021, it was one of the most common synthetic cannabinoid receptor agonists (SCRAs) seized by the Beijing Drug Control Agency. MDMB-4en-PINACA can be hard to detect in biological specimens because of ester hydrolysis. In this work, a highly sensitive liquid chromatography–high-resolution mass spectrometry (LC-HRMS) method was developed for the detection of MDMB-4en-PINACA metabolites in urine, serum, and hair samples. Metabolites from authentic samples were compared with those from human liver microsomes (HLMs) in vitro and in zebrafish in vivo. A total of 75 metabolites, including 44 previously unreported metabolites, were identified from urine samples. We found that 11 metabolic pathways were involved in MDMB-4en-PINACA metabolism, including acetylation, a novel metabolic pathway for SCRAs. Our results revealed that ester hydrolysis and hydroxylation were to the major metabolic pathways involved in MDMB-4en-PINACA metabolism. Using serum samples, we detected 9 metabolites along with the parent drug. Only the parent drug was detected using hair samples. The existence of ADB-4en-PINACA makes the currently used biomarkers for MDMB-4enPINACA not very specific for the intake of MDMB-4en-PINACA. Therefore, based on the identified metabolites and their structural features, we propose more sensitive screening tactics for MDMB-4en-PINACA using urine and serum samples. [Display omitted] •MDMB-4en-PINACA metabolic profiles were meticulously investigated by LC-HRMS.•Forty-four unreported metabolites were tentatively characterized and identified.•One new metabolic pathway was reported.•Effective screening tactics for urine and serum samples were proposed.•Metabolic differences in vivo and in vitro were compared.
ISSN:0731-7085
1873-264X
DOI:10.1016/j.jpba.2022.114985