Regulation of coordination and doping environment via target molecular transformation for boosting selective photocatalytic ability

Here, a novel transformed CdO with low coordination and N doping environment was simply synthesized through the involvement of the target molecule tetracycline (TC). The results showed that the shedding of surface hydroxyl groups led to a low coordination environment, and N doping formed a new dopin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2022-09, Vol.58 (72), p.10036-10039
Hauptverfasser: Zhou, Guosheng, Cheng, Yu, Yu, Zehui, Liu, Xinlin, Chen, Dehai, Wang, Jiaqi, Hang, Ying, Xu, Yangrui, Li, Chunxiang, Lu, Ziyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, a novel transformed CdO with low coordination and N doping environment was simply synthesized through the involvement of the target molecule tetracycline (TC). The results showed that the shedding of surface hydroxyl groups led to a low coordination environment, and N doping formed a new doping energy level, which increased the charge density and promoted the migration and separation of photo-generated carriers. Its photocatalytic performance was 4.32 times higher than that of hydroxy-rich CdO and the selectivity coefficient was 4.8. Combined with theoretical calculation and in situ Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) analysis, the significant improvement of selectivity was due to the interaction of the doped N atom with the methyl carbon in TC. This work provided a new idea for the simultaneous construction of low coordination environment and N-doped materials for efficient selective photocatalysis.
ISSN:1359-7345
1364-548X
DOI:10.1039/d2cc03373a