The journey of toluene to complete mineralization via heat-activated peroxydisulfate in water: intermediates analyses, CO2 monitoring, and carbon mass balance
Our study has thoroughly investigated the complete mineralization of toluene in water via heat-activated peroxydisulfate (PDS) by: (1) monitoring concentrations/peak areas of various intermediates and CO2 throughout the reaction period and (2) identifying water-soluble and methanol-soluble intermedi...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2022-10, Vol.440, p.129739-129739, Article 129739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our study has thoroughly investigated the complete mineralization of toluene in water via heat-activated peroxydisulfate (PDS) by: (1) monitoring concentrations/peak areas of various intermediates and CO2 throughout the reaction period and (2) identifying water-soluble and methanol-soluble intermediates, including trimers, dimers, and organo-sulfur compounds, via non-target screening using high-resolution mass spectrometry. Increased temperature and PDS dosage enhanced toluene removal/mineralization kinetics and increased the rate/extent of benzaldehyde formation and its further transformation. Artificial groundwater and phosphate buffer minimally impacted toluene removal but significantly decreased benzaldehyde formation, indicating a shift in transformation pathways. The stoichiometric PDS dose (18 mM at 40 °C) was adequate to completely mineralize toluene (1 mM), with |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.129739 |