Structural mechanism of endonucleolytic processing of blocked DNA ends and hairpins by Mre11-Rad50

DNA double-strand breaks (DSBs) threaten genome stability and are linked to tumorigenesis in humans. Repair of DSBs requires the removal of attached proteins and hairpins through a poorly understood but physiologically critical endonuclease activity by the Mre11-Rad50 complex. Here, we report cryoel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2022-09, Vol.82 (18), p.3513-3522.e6
Hauptverfasser: Gut, Fabian, Käshammer, Lisa, Lammens, Katja, Bartho, Joseph D., Boggusch, Anna-Maria, van de Logt, Erik, Kessler, Brigitte, Hopfner, Karl-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA double-strand breaks (DSBs) threaten genome stability and are linked to tumorigenesis in humans. Repair of DSBs requires the removal of attached proteins and hairpins through a poorly understood but physiologically critical endonuclease activity by the Mre11-Rad50 complex. Here, we report cryoelectron microscopy (cryo-EM) structures of the bacterial Mre11-Rad50 homolog SbcCD bound to a protein-blocked DNA end and a DNA hairpin. The structures reveal that Mre11-Rad50 bends internal DNA for endonucleolytic cleavage and show how internal DNA, DNA ends, and hairpins are processed through a similar ATP-regulated conformational state. Furthermore, Mre11-Rad50 is loaded onto blocked DNA ends with Mre11 pointing away from the block, explaining the distinct biochemistries of 3′ → 5′ exonucleolytic and endonucleolytic incision through the way Mre11-Rad50 interacts with diverse DNA ends. In summary, our results unify Mre11-Rad50’s enigmatic nuclease diversity within a single structural framework and reveal how blocked DNA ends and hairpins are processed. [Display omitted] •Cryo-EM structures of EcMre11-Rad50 bound to a protein-blocked DNA end and a hairpin•A single structural framework unifying Mre11-Rad50’s enigmatic nuclease diversity•Mre11-Rad50 is loaded onto blocked DNA ends with Mre11 pointing away from the block•Mre11-Rad50 strongly bends internal dsDNA for endonucleolytic cleavage Gut et al. use cryoelectron microscopy and biochemical studies to reveal how the Mre11-Rad50 (MR) nuclease generates an endonucleolytic incision to remove protein blocks from a DNA double-strand break, providing also a unified mechanistic basis for MR’s endonuclease, exonuclease, and hairpin-opening activities.
ISSN:1097-2765
1097-4164
DOI:10.1016/j.molcel.2022.07.019