Pharmacophore-based virtual screening from phytocannabinoids as antagonist r-CB1
Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function. The endocannabinoid system is related to obesity by increasing...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2022-09, Vol.28 (9), p.258-258, Article 258 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function. The endocannabinoid system is related to obesity by increasing orexigenic signals and reducing satiety signals.
Cannabis sativa
is a medicinal plant of polypharmaceutical potential that has been widely studied for various medicinal purposes. The in silico evaluation of their natural cannabinoids (also called phytocannabinoids) for anti-obesity purpose stems from the existence of synthetic cannabinoid compounds that have already presented this result, but which did not guarantee patient safety. In order to find new molecules from
C. sativa
phytocannabinoids, with the potential to interact peripherally with the pharmacological target cannabinoid receptor 1, a pharmacophore-based virtual screening was performed, including the evaluation of physicochemical, pharmacokinetic, toxicological predictions and molecular docking. The results obtained from the ZINC
12
database pointed to Zinc 69 (ZINC33053402) and Zinc 70 (ZINC19084698) molecules as promising anti-obesity agents. Molecular dynamics (MD) studies disclose that both complexes were stable by analyzing the RMSD (root mean square deviation) values, and the binding free energy values demonstrate that the selected structures can interact and inhibit their catalytic activity. |
---|---|
ISSN: | 1610-2940 0948-5023 |
DOI: | 10.1007/s00894-022-05219-3 |