Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants

Kitchen-waste-derived biochar (KBC) was produced by thermal treatment at 400 °C, and a series of KBC/BiOX (X = Br, Cl) photocatalysts were developed using ultrasonication and solvothermal treatment. The as-prepared photocatalysts were characterized by several tests and investigated by photocatalytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2022-11, Vol.214, p.114068-114068, Article 114068
Hauptverfasser: Niu, Lishan, Hu, Yulu, Hu, Heping, Zhang, Xiaoqian, Wu, Yixiao, Giwa, A.S., Huang, Shaobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kitchen-waste-derived biochar (KBC) was produced by thermal treatment at 400 °C, and a series of KBC/BiOX (X = Br, Cl) photocatalysts were developed using ultrasonication and solvothermal treatment. The as-prepared photocatalysts were characterized by several tests and investigated by photocatalytic reactions towards methyl orange (MO) and tetracycline (TC). The best photocatalysts, 0.15KBC/BiOBr and 0.15KBC/BiOCl separately achieved complete MO photodegradation in 20 min and 35 min. Further study confirmed that 0.15KBC/BiOBr and 0.15KBC/BiOCl possessed excellent photocatalytic efficiency that was 17.9 and 14.8 times higher than BiOBr and BiOCl, respectively. In addition, 0.15KBC/BiOX showed higher activity removal of TC than pure BiOX in 60 min. Notably, 0.15KBC/BiOX maintained a reproducible high photocatalytic efficiency after five recycles. Estimated band gap energy for 0.15KBC/BiOBr (2.40 eV) and 0.15KBC/BiOCl (3.00 eV) was considerably lower than that of BiOBr (2.73 eV) and BiOCl (3.30 eV), indicating a delocalized state was created when forming electronic pathways on the interface. Besides, visible-light harvesting of photocatalysts got promoted by the modification of KBC. Active species trapping experiments and electron paramagnetic resonance (EPR) tests illustrated that photogenerated holes were the principal active species, while ∙OH was involved in the reaction. The successful synthesis of 0.15KBC/BiOX catalyst provided a new approach on simultaneously degrading organic contaminants in water and disposing of excessive kitchen waste. •KBC and a series of KBC/BiOX (X = Br, Cl) photocatalysts was produced.•0.15KBC/BiOX presented the best photocatalytic performances towards MO and TC.•Graphite structured KBC served as a reservoir to transfer and store charges (e−).•Introducing KBC improved visible-light harvesting capacity of photocatalysts.•Modification of KBC promoted separation efficiency of photogenerated h+-e- pairs.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2022.114068