Pseudo-Isolated α‑Helix Platform for the Recognition of Deep and Narrow Targets

Although interest in stabilized α-helical peptides as next-generation therapeutics for modulating biomolecular interfaces is increasing, peptides have limited functionality and stability due to their small size. In comparison, α-helical ligands based on proteins can make steric clash with targets du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-08, Vol.144 (34), p.15519-15528
Hauptverfasser: Kim, Dong-in, Han, So-hee, Park, Hahnbeom, Choi, Sehwan, Kaur, Mandeep, Hwang, Euimin, Han, Seong-jae, Ryu, Jung-yeon, Cheong, Hae-Kap, Barnwal, Ravi Pratap, Lim, Yong-beom
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although interest in stabilized α-helical peptides as next-generation therapeutics for modulating biomolecular interfaces is increasing, peptides have limited functionality and stability due to their small size. In comparison, α-helical ligands based on proteins can make steric clash with targets due to their large size. Here, we report the design of a monomeric pseudo-isolated α-helix (mPIH) system in which proteins behave as if they are peptides. The designed proteins contain α-helix ligands that do not require any covalent chemical modification, do not have frayed ends, and importantly can make sterically favorable interactions similar to isolated peptides. An optimal mPIH showed a more than 100-fold increase in target selectivity, which might be related to the advantages in conformational selection due to the absence of frayed ends. The α-helical ligand in the mPIH displayed high thermal stability well above human body temperature and showed reversible and rapid folding/unfolding transitions. Thus, mPIH can become a promising protein-based platform for developing stabilized α-helix pharmaceuticals.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.2c03858