Automated empirical optimizations of software and the ATLAS project

This paper describes the automatically tuned linear algebra software (ATLAS) project, as well as the fundamental principles that underly it. ATLAS is an instantiation of a new paradigm in high performance library production and maintenance, which we term automated empirical optimization of software...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 2001, Vol.27 (1), p.3-35
Hauptverfasser: Clint Whaley, R., Petitet, Antoine, Dongarra, Jack J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the automatically tuned linear algebra software (ATLAS) project, as well as the fundamental principles that underly it. ATLAS is an instantiation of a new paradigm in high performance library production and maintenance, which we term automated empirical optimization of software (AEOS); this style of library management has been created in order to allow software to keep pace with the incredible rate of hardware advancement inherent in Moore's Law. ATLAS is the application of this new paradigm to linear algebra software, with the present emphasis on the basic linear algebra subprograms (BLAS), a widely used, performance-critical, linear algebra kernel library.
ISSN:0167-8191
1872-7336
DOI:10.1016/S0167-8191(00)00087-9