Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization

Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying mRNAs need to be stored at low temperatures, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-08, Vol.22 (16), p.6580-6589
Hauptverfasser: Cao, Yan, He, Zongxing, Chen, Qimingxing, He, Xiaoyan, Su, Lili, Yu, Wenxia, Zhang, Mingming, Yang, Huiying, Huang, Xingxu, Li, Jianfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying mRNAs need to be stored at low temperatures, which hinders their prevalence. Herein, an efficient lung-specific mRNA delivery platform named five-element nanoparticles (FNPs) is developed in which helper-polymer poly­(β-amino esters) (PBAEs) and DOTAP are used in combination. The new strategy endows FNPs with high stability by increasing the charge repulsion between nanoparticles and the binding force of the aliphatic chains within the nanoparticles. The structure–activity relationship (SAR) shows that PBAEs with E1 end-caps, higher degrees of polymerization, and longer alkyl side chains exhibit higher hit rates. Lyophilized FNP formulations can be stably stored at 4 °C for at least 6 months. Overall, a novel delivery platform with high efficiency, specificity, and stability was developed for advancing mRNA-based therapies for lung-associated diseases.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.2c01784