Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field

Perpendicular electric fields can tune the electronic band structure of atomically thin semiconductors. In bilayer graphene, which is an intrinsic zero-gap semiconductor, a perpendicular electric field opens a finite bandgap. So far, however, the same principle could not be applied to control the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2022-10, Vol.17 (10), p.1078-1083
Hauptverfasser: Domaretskiy, Daniil, Philippi, Marc, Gibertini, Marco, Ubrig, Nicolas, Gutiérrez-Lezama, Ignacio, Morpurgo, Alberto F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perpendicular electric fields can tune the electronic band structure of atomically thin semiconductors. In bilayer graphene, which is an intrinsic zero-gap semiconductor, a perpendicular electric field opens a finite bandgap. So far, however, the same principle could not be applied to control the properties of a broader class of 2D materials because the required electric fields are beyond reach in current devices. To overcome this limitation, we design double ionic gated transistors that enable the application of large electric fields of up to 3 V nm −1 . Using such devices, we continuously suppress the bandgap of few-layer semiconducting transition metal dichalcogenides (that is, bilayer to heptalayer WSe 2 ) from 1.6 V to zero. Our results illustrate an excellent level of control of the band structure of 2D semiconductors. Double ionic gated transistors enable excellent control of the band structure of atomically thin semiconductors. Perpendicular electric fields as large as 3 V nm −1 can fully quench the gap of bi- and few-layer WSe 2 .
ISSN:1748-3387
1748-3395
DOI:10.1038/s41565-022-01183-4